
www.manaraa.com

Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2010

GPU Integration into a Software Defined Radio
Framework
Joel Gregory Millage
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Electrical and Computer Engineering Commons

This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital
Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital
Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Millage, Joel Gregory, "GPU Integration into a Software Defined Radio Framework" (2010). Graduate Theses and Dissertations. 11684.
https://lib.dr.iastate.edu/etd/11684

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F11684&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F11684&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F11684&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F11684&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F11684&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F11684&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=lib.dr.iastate.edu%2Fetd%2F11684&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/11684?utm_source=lib.dr.iastate.edu%2Fetd%2F11684&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

GPU integration into a software defined radio framework

by

Joel Gregory Millage

A thesis submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Major: Computer Engineering

Program of Study Committee:
Joseph Zambreno, Major Professor

Zhang Zhao
Manimaran Govindarasu

Iowa State University

Ames, Iowa

2010

Copyright c© Joel Gregory Millage, 2010. All rights reserved.

www.manaraa.com

ii

DEDICATION

This thesis is dedicated to my fiance, Britnee, for her understanding and encouragement.

Also to my family for their constant encouragement throughout all my years of schooling.

www.manaraa.com

iii

TABLE OF CONTENTS

LIST OF TABLES . v

LIST OF FIGURES . vi

ACKNOWLEDGEMENTS . vii

ABSTRACT . viii

CHAPTER 1. Introduction . 1

CHAPTER 2. SDR Basics . 4

2.1 SDR with SCA . 8

2.1.1 CORBA . 10

CHAPTER 3. GPU Architecture and GPU computing 13

CHAPTER 4. Proposed Approach . 16

CHAPTER 5. Related Work . 20

5.1 SDR Related Work . 20

5.2 GPU Acceleration Related Work . 21

5.2.1 CUDA GPU Acceleration . 22

5.2.2 Other GPU Acceleration Techniques . 24

5.3 SDR + GPU Related Work . 25

CHAPTER 6. Experimental Setup . 28

6.1 AM Demodulation Component . 42

6.2 FM Demodulation Component . 43

6.3 Amplifier Component . 44

www.manaraa.com

iv

6.4 Decimator Component . 44

6.5 Interpolator Component . 45

CHAPTER 7. Experimental Results . 46

CHAPTER 8. Conclusion and Future Work . 53

www.manaraa.com

v

LIST OF TABLES

7.1 CPU Performance in milliseconds in power of 2 sample increments . . 47

7.2 GPU Performance in milliseconds in power of 2 sample increments . . 47

7.3 GPU Setup in Milliseconds . 48

www.manaraa.com

vi

LIST OF FIGURES

2.1 Example SDR Architecture [1] . 5

2.2 SCA CF Architecture Overview [2] . 9

2.3 Overall Radio SW Architecture with SCA [2] 10

3.1 Nvidia GPU Overview [3] . 14

3.2 CUDA thread blocks on GPU cores [3] 15

6.1 CUDA grid thread and thread blocks [3] 32

6.2 CUDA program execution between CUDA and C [3] 38

6.3 Example execution of OSSIE Components 42

7.1 Plot of GPU vs CPU of AM Demodulation Performance 49

7.2 Plot of GPU vs CPU of Amplifier Performance 50

7.3 Plot of GPU vs CPU of FM Demodulation Performance 50

7.4 Plot of GPU vs CPU of Decimator Performance 51

7.5 Plot of GPU vs CPU of Interpolator Performance 51

www.manaraa.com

vii

ACKNOWLEDGEMENTS

Thanks to my advisor Joseph Zambreno for giving me input and ideas when I was stumped.

I also want to thank my co-workers at Rockwell Collins for teaching me C++, CORBA and

debugging over my years of working their which gave me the ability to jump into the work of

this thesis with ease.

www.manaraa.com

viii

ABSTRACT

Software Defined Radio (SDR) was brought about by moving processing done on specific

hardware components to reconfigurable software. Hardware components like General Purpose

Processors (GPPs), Digital Signal Processors (DSPs) and Field Programmable Gate Arrays

(FPGAs) are used to make the software and hardware processing of the radio more portable

and as efficient as possible. Graphics Processing Units (GPUs) designed years ago for video

rendering, are now finding new uses in research. The parallel architecture provided by the

GPU gives developers the ability to speed up the performance of computationally intense pro-

grams. An open source tool for SDR, Open Source Software Communications Architecture

(SCA) Implementation: Embedded (OSSIE), is a free waveform development environment for

any developer who wants to experiment with SDR. In this work, OSSIE is integrated with a

GPU computing framework to show how performance improvement can be gained from GPU

parallelization. GPU research performed with SDR encompasses improving SDR simulations to

implementing specific wireless protocols. In this thesis, we are aiming to show performance im-

provement within an SCA architected SDR implementation. The software components within

OSSIE gained significant performance increases with little software changes due to the nat-

ural parallelism of the GPU, using Compute Unified Device Architecture (CUDA), Nvidia’s

GPU programming API. Using sample data sizes for the I and Q channel inputs, performance

improvements were seen in as little as 512 samples when using the GPU optimized version of

OSSIE. As the sample size increased, the CUDA performance improved as well. Porting OSSIE

components onto the CUDA architecture showed that improved performance can be seen in

SDR related software through the use of GPU technology.

www.manaraa.com

1

CHAPTER 1. Introduction

Software Defined Radio (SDR) is a radio that can be transformed through changing of

software and firmware [4]. Typically the software is changed within a GPP, DSP or FPGA.

This requires any analog signals received over the air (OTA) to be converted to a digital signal

for the processors to utilize the data[4]. With the ability to change software the radio becomes

more dynamic and can easily be modified to operate at different frequencies and with multiple

waveforms. SDR is an ever growing market in the defense industry for the United States and

across the world. This is due to the fact that it is necessary for militaries to communicate

with air, ground, and maritime units simultaneously during battle. This communication is

done on multiple frequency bands with voice, navigation, and other types of data. This is not

a new problem as radios have been used to communicate for decades in both the commercial

and military sectors, but old radios used only simple software controllers and could only do a

specific protocol on a particular frequency. As technology evolved, SDR was established and

opened a new door for how radios of the future could be implemented. SDR has been used

by the military for many years and over the last decade has grown in the open source sector

with the immersion of GNU Radio. The GNU Radio supplies a completely open software and

hardware solution to SDR [4] The Universal Software Radio Peripheral (USRP) was created as

a Hardware platform (HW) for GNU Radio and is used on other open source SDR projects as

well. The immersion of open source SDR projects has allowed non-industry SDR developers

to take shape, especially in the area of research, to accommodate the implementation of new

protocols and technologies.

A growing architecture in the defense area for SDR is Software Communication Architec-

ture (SCA) which is a detailed architecture specification defining how a radio operates within

www.manaraa.com

2

all of the software components. This includes the waveform as well as how the low-level com-

ponents and services are designed at the C++ class level. Given SCA’s wide use in the defense

industry it was bound to find its way into the open source sector and this was accomplished by

Open Source SCA Implementation: Embedded (OSSIE). OSSIE was developed as a SCA based

open source SDR tool that can be used to build SCA waveforms and SCA components of the

waveform using Eclipse as the development environment. Although OSSIE has the ability to

build new components, the tool itself comes installed with a handful that are used in a typical

SDR waveform. Functional components like FM and AM demodulation, encoding/decoding

algorithms, a USRP controller, and signal amplifiers are all included on installation as well as

the ability to communicate with PC sound cards. These components are written in C++ and

run on the CPU of the PC it is installed on.

In embedded SDR, Field Programmable Gate Arrays (FPGAs) and Digital Signal Pro-

cessors (DSPs) are commonly used devices for offloading signal processing from the General

Purpose Processor (GPP) to improve radio performance. The problem with using DSPs and

FPGA’s is they can have their limitations depending upon use. The GPU becomes a very

different type of component to use due to its inherent parallel nature. Taking the FPGA and

DSP speed up a step further, GPUs will be used to determine if off loading the GPP onto the

PC’s GPU would improve performance of a similar manner or to a greater degree. NVIDIA

developed the Compute Unified Device Architecture (CUDA) API for nearly all of the GPUs

they have made over the last few years, giving any developer the ability to program their GPU

in a relatively easy manner by installing the CUDA SDK. The real power of using the GPU is its

ability to parallelize operations with ease by creating threads blocks with concurrent threads.

This allows normal C loops to be transformed into having one thread take each loop iteration

opposed to one thread doing each of them sequentially.

Porting OSSIE components of various complexity showed performance gains over the GPP

on all components. Using C++ and CUDA timing measures, the performance of the functions

were measured to compare the execution time of the components’ implementation. The tim-

ing data recorded did not contain time to configure and setup the Common Object Request

www.manaraa.com

3

Broker Architecture (CORBA) portions of the component or any other component specific

configuration separate of the raw computation time of the procedure call. The setup of the

CUDA functions was done through the constructor or an initializer of the class, therefore, only

the minimal computation had to be done for component processing on the portion of data.

Various computation runs were used with different sample sizes to give a wide spectrum of

results. Given the parallel architecture of the GPU as the size of data samples increased the

performance improved much quicker than the CPU implementation counterpart.

The thesis is composed as follows, Chapter 2 contains an overview of SDR as well as SDR

and SCA combined including CORBA. Chapter 3 covers the GPU and GPU optimizations.

Chapter 4 is the proposed approach of the paper. Chapter 5 is comprised of related work of

SDR, GPU and SDR + GPU. The experimental setup is seen in chapter 6 followed by the

experimental results in chapter 7. Chapter 8 concludes the paper and gives potential topics of

future work.

www.manaraa.com

4

CHAPTER 2. SDR Basics

SDR was a term coined back in the 1990’s by Joe Mitola in his article where he discussed

Software Radio Architecture [5], however DoD contractors had begun making software based

radios back in the 1970s and 1980s. SDR relies heavily on multiple disciplines of engineering to

accomplish a common goal, whereas “old fashioned” radios relied heavily on electrical engineers

with some simple software processing. New radios rely on both hardware and software expertise

to design an architecture that can be reused and reconfigured in multiple ways and on multiple

platforms. This is especially important as the complexity of the radios grow and costs continue

to rise as schedules continue to shrink.

The real key to SDR is to move as much of the hardware processing that would have

been done normally in electrical components such as mixers, signal amplifiers, modulation and

demodulation into software or firmware. This flexibility allows radios to operate in different

ways, in new configurations, and with different features that do not require new hardware each

time but only require distinct changes in software or firmware. This makes the radio more

dynamic by having a common hardware architecture which can be used for various radios.

The software inside can then be modified on the GPP or DSP to accommodate any new

operation. This requires smarter design and reuse by the software engineer to create software

that is highly object-oriented, therefore, as new hardware platforms are created the software

can easily be reused and modified if necessary. Certain software of the radio will always have to

be modified for new hardware. For example low level drivers and boot-up software, or possibly

integration with different operating systems will always cause changes. Higher level components

like waveform software should be abstracted enough to easily be moved from hardware platform

to hardware platform with relative ease. Most HW changes for the WF portion will be a non-

www.manaraa.com

5

issue since the change would generally be implemented on a similar processor and would only

affect the Board Support Package (BSP), which would contain hardware specific software.

Figure 2.1 Example SDR Architecture [1]

It is also important for hardware engineers to be aware of portability in their design since

new projects can change the radio hardware architecture. Radios may need to be reduced in

size in order to fit into a smaller form factor or shrunk for other various reasons. It is also

important to separate the pieces of the radios into different cards since most radios use similar

components such as red side, black side, and a Cryptographic SubSystem (CSS). Certain cards

will most likely be used more than others, but making the cards into a modular design with

generic interconnects allows them to be used in a more “plug and play concept”. Figure 2,

adapted from [1], shows a possible SDR architecture that could easily be used in a SDR. The

figure specifically shows the RF go into the ADCs and DACs followed by FPGA processing.

The black GPP then receives data from the FPGA and passes it to the CSS. The red side

processing would be even less complex since it would only contain a red side GPP then a

www.manaraa.com

6

possible FPGA for handling of an ethernet, serial or 1553 bus. A DSP could also be used off

the GPP for audio processing if necessary. The figure shows one instance of the RF RX chain

but multiple could exist if the radio has multiple channels.

It can be hard to know where the line is drawn between HW and SW in a SDR, but since

there is no general rule, it comes down to the application being implemented and how the

designers choose to implement it. SW can also be a vague term used in a SDR because many

radios do not simply use SW like C++ and C, but also have FPGAs which use languages

like Verilog and VHDL to program firmware for the radio. This is usually done to offload

processing from the GPP or DSP which can be done more efficiently on a FPGA device. A

general example would be a DoD WF, called Link-16, which uses the reed-solomon algorithm

on the signal to encode it before it is transmitted on the network and decodes the message upon

reception [6]. Therefore this could be implemented on the GPP, DSP or FPGA. Depending on

the system architecture each can have their advantages which will depend on timing, size or

speed of devices or where it can be implemented. Also computation time lost to transfer the

data between devices can be costly and needs to be considered. Some WFs have very tight

timing requirements and wasted computation cycles must be kept to a minimum.

SDRs built under contract for the DoD have to implement a CSS that encrypts and decrypts

data that is sent and received over the network [7]. This is necessary since most radios that are

fielded can transmit Secret and Top Secret data and to do so are required to implement a CSS.

A CSS device is generally an Application-Specific Integrated Circuit (ASIC) or FPGA and is

used on multiple SDRs within the same company [7]. They implement multiple encryption

and decryption algorithms that are commonly used on a SDR platform or a given SDR WF.

Most of these CSS devices have to go through some type of National Security Administration

(NSA) certification before they can be fielded which is very timely and expensive. Given the

cost to have a certified CSS, it needs to be developed correctly the first time and not have to be

redone for multiple radios and multiple programs. The CSS is generally used in SDR to pass

data between CPUs; one side is deemed the red side which has the data unencrypted and takes

the data in over a common bus like serial or ethernet from the host. The other side, the black

www.manaraa.com

7

side, has encrypted data that has been encrypted by the CSS; which then passes the data to

the modem to go out of the radio over RF [1].

As the complexities of SDR become more apparent, it can be seen that SDR begs many areas

of expertise from several disciplines. Given the complexity of the software and firmware, the

hardware portion of the SDR may appear to have the least amount of complexity. This could

be true depending on the complexity of the WF protocol that is desired to be implemented.

For example, the Link-16 waveform protocol operates on the 969 to 1206 MHz frequency band.

However, this band has notches inside at two frequency portions that the radio cannot transmit

on [6]. This is a very difficult task for the HW, RF (Radio Frequency) and Electromagnetic

Capability (EMC) teams to ensure that the radio will not transmit on those frequency bands.

Other hardware challenges are met in SDR but mostly vary upon the WF protocol that is

being implemented. The end goal of software defined radio is to have a radio that is completely

configurable and contains as much software and hardware reuse as possible. Paying attention

to all these details should reduce budget and shorten schedule.

SDR is a growing field in government and commercial markets and it drives a considerable

amount of research and development. One growing R&D effort is the cognitive radio effort

of SDR. This takes SDR steps further than normal SDR implementations. Instead of the

user being required to switch SDR WFs in a given radio (usually requiring power cycling or

possible software reconfiguration). The radio can listen on multiple frequency bands and be

able to sense what frequency spectrums are currently being used [8]. Depending on how the

cognitive radio is setup and which WFs it contains, the radio can join these networks in real

time without requiring new software loads or power cycles. All the software can then be on the

radio simultaneously and the user can pick which network to join based on what is available

at the time in OTA traffic [8]. This new extension to SDR brings larger challenges into the

software and hardware realms and is still in the R&D phase. This will be a growing field over

the next decade as companies try to field working prototypes that implement this functionality.

www.manaraa.com

8

2.1 SDR with SCA

The majority of modern radios now being developed under DoD contracts use SCA as the

basis for the radio architecture. SCA was developed under Joint Program Executive Office

(JPEO) of the Joint Tactical Radio System (JTRS) as an architecture to assist in the devel-

opment of designing software defined radios [2]. The SCA framework was designed to increase

the portability and reuse-ability of the software in the radio, therefore reducing cost and devel-

opment time of future radios. JTRS also uses the SCA architecture to allow DoD waveforms to

be developed at one company where they then can be inserted into the waveform library held

by JTRS. The waveform is then designed with generic SCA interfaces so that any approved

company can take the WF software from the database and implement it on a SCA based frame-

work. [2] defines the standard of SCA 2.2.2 which defines specific parts of the Core Framework

(CF), Device Manager, Resource Factory, Application Factory, etc. The standard specifically

discusses how each class should operate and what functions the class should have. Radios can

become SCA certified which requires having an outside company examine the software and

documentation of the radio and verifying that the radio is indeed following the SCA standard.

It is also common for radios to be partially SCA compliant when only parts of the software

are following the SCA standard. Having a radio which is SCA compliant or certified can be a

selling point for a radio depending on the customer.

SCA brings many benefits when using it as a SDR architecture, especially if a company has

more than just a handful of WFs on various radios. Using a common architecture across all the

radios allows broad reuse in a variety of platforms also allowing new WFs to be written directly

on top of the existing framework. The challenge then comes if particular WFs want certain

features and have necessary components that others may not. These then need to be designed

in a way that can easily plug in and out of the existing framework. SCA aids this by using

Extensible Markup Language (XML) as a means to connect various components. The SCA

Core Framework (CF) parses the XML for initial parameters of components and connection

strings for CORBA connections, which will be discussed in more detail in the following section.

This enables various components to coincide with each other. The XML can control whether

www.manaraa.com

9

or not a given component is used, and if it is, what parameters it will be initialized to use. This

is also useful in components which may be used across multiple WFs but need to be configured

or implemented differently.

Figure 2.2 SCA CF Architecture Overview [2]

Though the CF generally contains devices of various use, devices such as driver abstractions

are typically what they are used for. There are also services used across multiple radios. These

services include fault management (how does the radio report things that have gone incor-

rectly), system control (how are modes and states of the radio at a system level defined, how

do they transition etc.) as well as EMC protection (what does the radio do if it is operating

outside its correct frequency spectrum). These types of services aid in the radio development

and they can be modified and adapted easily for each specific implementation. In figure 2.1,

adapted from [2], shows the general architecture of how the CF is designed. The domain man-

ager acts as the controller for all the devices and services. The device manager then manages

the services and devices individually. A file manager is used to manage the components and can

also manage various data that needs to be written and saved during real time radio operation.

The application factory than launches and starts the WF and its necessary components as well

as starting their threads upon all components being started and initialized.

In figure 2.1, adapted from [2], shows a complete overview of how the CF interfaces with

the CORBA portion of the SCA architecture and how it sits on top of the OS. The waveform

www.manaraa.com

10

software, sits on top of all of those components and has to use CORBA to interact with any

portion of the CF including services and devices. The waveform must always go through the

BSP to communicate with any OS calls just as services and devices would have to.

Figure 2.3 Overall Radio SW Architecture with SCA [2]

2.1.1 CORBA

One of the more prevalent portions of the SCA standard, which is the cause of latency

and other concerns, is the requirement that all Computer Science Configuration Items (CSCIs)

need to use CORBA to communicate between one another. CORBA is a distributed proto-

col standardized by Object Management Group (OMG) that abstracts function calls between

CSCIs using Interface Definition Language (IDL) [9]. IDL is a generic language that looks and

feels similar to C/C++, and is generic in the sense that any Object Request Broker (ORB)

can use the IDL file that was written. It then can generate its specific client and server portion

of the code for the developer to use in their programs. IDL ran through an ORB generates

files in the language that is allowed or configured for by the ORB. These files are then used by

the developer to create uses (client side implementation) and provides (server side implemen-

tation) ports which act as the interfaces to the CSCI. Provides ports are on the server side of

the function call and is where the function is implemented. The user of the provides port is

www.manaraa.com

11

identified by the uses port, the provides port is called when the user wants to use the specified

function implemented in the provides port to either initialize the CSCI, pass data into it or get

data back from the provides port. The CF is used to connect the ports upon start up of the

terminal. The XML specified for each component in a SCA radio defines CORBA Distributed

Computing Environment (DCE) strings that are used to uniquely identify each component and

connect them up in the manner specified by the XML. XML for the radio is easiest to create

in a XML generation tool designed for SCA components. The tool allows a model to be made

of the entire software architecture of the radio and then creates XML based on the connections

and parameters for all the components. This is done for every connection in the entire system

and then auto generates the XML necessary to make the correct connections. This alleviates

wasted time and effort of trying to write all the XML by hand.

Using the IDL files as interfaces in CORBA adds abstraction to the components so the

interface between CSCIs can remain relatively consistent. Having this separation allows func-

tionality internally to change without affecting how other components interact with it. This

makes it easy to create dynamic functional components such as devices or services which plug

into the CF as stated in the previous section. Using a common IDL interface allows a service or

device to be used on multiple software programs with multiple WFs. This gives the framework

more of a plug and play mentality or at least allows the interfaces to be predefined. This way

if a new WF is developed that needs an existing service but new internal functionality, the

interface is already defined and can be coded against immediately while the internal workings

of the components are designed and implemented.

Though CORBA does have advantages in its ability to abstract components, CORBA can

also be considered a downfall to the SCA architecture. CORBA licenses can be expensive and

cut into the cost of the terminal or profits incurred from the radio. CORBA can be hard to

initially integrate and implement into a terminal. This is especially true if the radio is being

ported from an older radio that was not designed in such a modular way. It can also eat away

at processing time in the radio which, depending on the implemented WF, can be very costly.

The time needed to make a CORBA call depends upon the embedded device it is implemented

www.manaraa.com

12

on and ORB being used, but if the radio has tight timing requirements it can have a large im-

pact on system performance. This is especially important if redesigning an older software radio

architecture which was not designed around CORBA and now wishes to be SCA compliant.

Seeing how CORBA fits into the SCA standard and SDR waveforms as a whole, the software

complexity of the radio can be seen in its entirety. OSSIE encompasses all of these features into

one software application and makes the development seamless. Since OSSIE handles developing

the SCA interfaces around CORBA for the developer, modifying the operation of the compo-

nents computation is all the needs to be changed when looking to optimize the components

execution. This allows the implementation of the components to be done on another device,

such as the GPU, without affecting the operation of the rest of the system.

www.manaraa.com

13

CHAPTER 3. GPU Architecture and GPU computing

The GPU is a graphics processing unit that is used to run displays on computers and embed-

ded devices which renders all aspects of the graphical user interface. Due to the requirements

on graphics cards for high resolution video games and movies, both processing power in GPUs

and the parallelism inside have increased drastically over the years. As the parallelism has

increased in GPUs, CPUs have focused on efficient execution of single threads. Due to this

development the GPU has found more popularity in research and heavily computational com-

ponents because of the GPUs ability to parallelize pieces of software. As processors continue

to have more cores, there still doesn’t exist a API for wide use of these cores like the GPUs

API.

In the fall of 2006, NVIDIA released an API for its GPU processors titled CUDA; this

started initially with support for a handful of GPU processors [10]. As time has advanced so

has the CUDA API support which gives nearly all GPUs developed by NVIDIA the ability

to use the CUDA API. In the winter of 2007, AMD released its stream computing SDK that

included Brook+ which was a AMD optimized version of Brook [11]. Brook is a extension of

the C-language for parallel programming created at Stanford university, BrookGPU being the

GPU variate [12]. The stream computing SDK also known as AMD Stream, has grown like

CUDA and now allows for support of all AMD GPUs.

This thesis focuses on CUDA, which is the simple C-like API used to program parallel ap-

plications on the GPU. This allows C developers to make the transition between C and CUDA

somewhat easier. Figure 3, adapted from [3], shows how the Nvidia GPU can be programmed

using CUDA C, Open Computing Language (OpenCL), DirectCompute or CUDA Fortran.

The CUDA architecture allows the user to create thread blocks which contain multiple threads

www.manaraa.com

14

Figure 3.1 Nvidia GPU Overview [3]

within a block. The user specifies these settings prior to invoking the CUDA application from

C or C++. Each block can have 512 threads and multiple blocks can be created to run on a

given GPU core. The ability to have this large number of threads running in parallel, instead

of sequentially, allows for certain computations to run significantly faster. The max number

of threads in a thread block is 512 and when the given block is running on the GPU all the

threads are allowed to run concurrently. Figure 3, extracted from [3], gives an example of

how thread blocks can be mapped onto various GPU cores. The thread blocks, when ran, are

swapped in-and-out of the GPU similarly to how an Operating System (OS) swaps processes

in and out of a CPU. In later sections the various scheduling methods for the GPU blocks

will be examined.

Though this thesis only uses the thread parallelization and memory management portions

of CUDA. The CUDA API has many built-in functions for handling surface references, texture

references, and multiple dimension data sets. CUDA also provides interoperability with other

GPU interfaces like OpenGL, Direct3D 9, Direct3D 10 and Direct3D 11. In [13], the CUDA

reference manual, all of the available CUDA-based functions for the most recent edition of

CUDA are specified. This is very helpful to a developer who wants to know all the possible

options when designing a CUDA based application.

One of the larger challenges in GPU programming is debugging the application being devel-

oped. NVIDIA supplies a CUDA debugger with its SDK, but to utilize it the GPU being used

www.manaraa.com

15

Figure 3.2 CUDA thread blocks on GPU cores [3]

to display the monitor needs to be different than the GPU used to run the CUDA debugger.

Therefore, debugging requires having multiple graphics cards or a single NVIDIA GPU and

an integrated graphics card on the computer’s motherboard. All CUDA functions return error

codes which are generally descriptive to what the problem is and once a CUDA application is

configured initially it becomes easy to use the framework on other programs. The use of error

codes doesn’t require multiple GPU devices so it can be easily used by any developer.

www.manaraa.com

16

CHAPTER 4. Proposed Approach

The basis of this work revolves around OSSIE, which is an open source SCA 2.2.2 implemen-

tation developed at Virgina Tech. OSSIE is a tool developed in C++ as a plug-in into Eclipse

that can be used to create SCA based WFs and SCA based components. The Eclipse plug-in

allows the developer to create the CORBA uses and provides ports defining how components

will expose its external interface. The Eclipse builder uses these interface definitions to create

the XML for the component that will be used when it is launched by the device manager. It

also creates C++ code skeletons for launching the component and initializing its inter-workings.

In summary, OSSIE encompasses all the components discussed in previous sections needed to

make SCA functional, but incorporates them into one application. Ordinarily developers have

to buy a license for the ORB and then create all the XML by hand or purchase a tool to create

the XML by diagramming the system. Done either way, the XML has to be designed to connect

the SCA components together and then to connect the WF. Using OSSIE abstracts away the

inter-workings of SCA and makes it transparent to the user.

When the component is created a skeleton process data function is constructed in the class

of the given component. This is where the desired implementation of the component is inserted.

After the components are constructed, all that needs to be passed to it are the correct XML

strings. Then, based on the CORBA connections, the component gathers data, performs the

given computation, and passes on the data. The connections that define what components pass

the data in and where the data goes out is defined by how the CORBA connections are done

within the WF Builder of the Eclipse plug-in.

When OSSIE generates the component, it creates three XML files used in the connections.

The .prf file is the properties descriptor file which would contain any component specific proper-

www.manaraa.com

17

ties that need to be set upon start-up. The .scd XML file is the Software Component Descriptor

(SCD) that is used to describe what kind of interfaces and ports the component will be used

to communicate on. Finally, the .spd XML file is a Software Package Descriptor (SPD) which

defines the different implementations for a given component that are available, since various

components can be cross-compiled for different target platforms [14].

The approach of this work is to take already created components in the OSSIE tool and

modify the process data function. Rather than doing the computation in C++ as it currently

is implemented, the implementation will be changed to be completed on the GPU. The data

has to be copied into GPU memory space by using CUDA device pointers for each input at-

tribute. The pointers are then used as inputs for the given CUDA function. Once the CUDA

function is finished the data is then copied back out in the GPP memory space. Given the

data size and computation time, the time lost calling into CUDA and copying the data back

and forth between the GPP and GPU is made up by the computation time that is gained using

the GPUs parallelization. The CUDA 3.1 API, which is the most recent revision at the time

of this research, was used throughout the implementation.

For the existing C++ software to compile and link with CUDA properly, the components

are modified to contain a .cu file which contains the implementation of the CUDA software.

The contents of the main.cpp file of each component is moved into the .cu containing the same

implementation as it did before. This is done since it is easier to link with CDUA due to the

fact that it is difficult to determine all the necessary libraries needed to link using g++ for all

the CUDA symbols to be correctly found. The CUDA function is also created within this .cu

file, which is defined as an extern, so that it can be called from the process data portion of

the component. The majority of the components in OSSIE are generally for loops over the

I and Q channels of the data passed to it or while loops which continuously grab data from a

component, process the data, pass it on and then repeat. Within these loops the data is then

processed in a specific way to the desired result of the component. Using the CUDA architec-

ture, the length of the data can be divided into blocks of threads defined by the data length to

allow the number of blocks to expand or contract proportionally to the size of the data. Having

www.manaraa.com

18

this dynamic architecture in each component allows the component to vary depending on the

given set of data and still use CUDA’s processing power to its full potential.

The initial call into CUDA is defined as a global function using the global CUDA di-

rective. This is essentially the “main” in the CUDA portion of this function and is always used

to enter computation in the CUDA software. Every call to various CUDA functions from then

on is identified by using the device directive in CUDA. The majority of the OSSIE com-

ponents which could potentially be ported are generally quite simple in complexity and only

require a global function. The functions that are more complex and tied closely to the C++

object oriented mentality are harder to port to CUDA since CUDA is based more on C and

classes have to be decomposed back to a “C like” mentality. This can be especially challenging

given the number of signal helper classes that some of the components use. Only modifying

the components internal workings and none of its external interfaces allow it to be used as it

typically would in the OSSIE waveform builder. The OSSIE waveform launcher applications

like nodeBooter and ALF are still able to be used to launch, visualize and debug the waveform

applications. The only difference being that the actual implementation of the component now

runs on the GPU and not the GPP. As for the OSSIE tools themselves, they are unaware of

where the computation of the components are residing since they are concerned only about

connecting the interfaces correctly.

The WF builder for OSSIE uses “drag and drop” to select components the developer desires

to use as well as how they wish to connect up the components. Once the new GPU components

are created and installed into the OSSIE build tree, the OSSIE builder will detect the com-

ponents in the GUI interface and these will show up as additional components to select from.

Running the components from nodeBooter and ALF is helpful to see if the data going in and

out is the same as before in the non-GPU implementation. However, running in these tools

makes it difficult to tell if anything is going wrong in the component itself. It is much easier

to stub out the main of the component and send a piece of canned data into the component

without any of the CORBA type connections. This lets the developer of the component ver-

ify it is operating correctly at an individual level prior to integrating with other components.

www.manaraa.com

19

Once the CUDA portion of the software is verified against the C++, which is easily completed

by running both components and comparing outputs, the component is then considered to be

working well enough to be used with other components interchangeably.

www.manaraa.com

20

CHAPTER 5. Related Work

Research on SDR has become a popular topic as more open source software projects produce

efficient and viable testing environments for comparing WFs or testing new features. This is

even more substantial as SDR WFs become more complex and the ability to test a new feature

without HW is necessary to ensure proper performance and implementation. The GPU is also

a common topic in researching the speed up of algorithms that can be parallelized and run with

better performance than typical GPP architecture environments, especially in the simulation

realm where complicated simulations can take extensive run times. Both of these topics pose

interesting difficulties and challenges in themselves as well as research topics and opportunities.

There are several existing papers on both of these topics with a broad spectrum of uses in both

SDR and GPU as well as some containing the combination of the two.

5.1 SDR Related Work

The popularity of SDR has been ever growing over the last decade with advancement in

technology and with software’s ability to add increased complexity. The open source commu-

nity has created a complete SDR implementation titled GNU Radio. GNU Radio is an open

source framework for building, testing and configuring software defined radio waveforms. GNU

Radio is separated into functional C++ components that are “connected” using Python. Being

architected this way allows the C++ blocks to be abstracted from one another and connected

in any way possible. GNU Radio can run on any computer with a sound card to do simple

audio decoding but to do a full SDR test environment there needs to be HW to go with the

SW. The hardware created to coincide with the software is the USRP. The USRP is an open

source SDR hardware platform that supports transmit (TX) and receive (RX) connections as

www.manaraa.com

21

well as external power amplifiers [15]. This hardware was designed for GNU Radio but is used

on many open source projects [16]. The additional benefit of the USRP is that all the FPGAs

on the board have open source firmware that can be downloaded and modified as well as open

source Printed Circuit Board (PCB) layouts.

GNU Radio is an open source SDR that has a powerful test environment, but does not

implement any of the SCA framework like OSSIE. OSSIE, unlike GNU radio, has created a

functioning and detailed GUI (Graphical User Interface) plug-in to Eclipse which can be used

for WF development. The eclipse plug-in can be used to create WF components from scratch

or to connect default and user created components. OSSIE works by using the XML that is

created from the eclipse GUI WF builder to launch the SCA CF and connects to any WF XML

the developer chooses. The other added benefit is that the USRP, that is designed and used

on GNU Radio, is also used and fully functional under OSSIE. When a component in the WF

is used it is assigned to a device and can therefore be assigned to the USRP to be run on HW

for testing opposed to being run strictly for simulation.

5.2 GPU Acceleration Related Work

GPU computing is a common technique used by researchers to speed up specific algorithms

and computations since GPUs are generally used for graphic centric applications which re-

quire math intensive calculations done at very high rates. This extensive computation need

causes GPUs to be designed in a highly parallel way to be able to make the most out of the

computations done every second. Having this architecture at hand for researchers becomes

very useful in increasing algorithms which can be rewritten in a parallel manner that can take

advantage of the parallel architecture. CUDA is a language similar to C that is used to write

applications for NVIDIA GPUs as stated earlier. Though the CUDA GPU Acceleration section

discusses extensive research done in CUDA, the Other GPU Acceleration Techniques section

shows research done with GPUs done with GPU APIs. OpenGL is a API that has been around

for a significant amount of time and is widely used for graphics programming. OpenGL isn’t

designed as a parallel programming language as CUDA is, since OpenGL is designed around

www.manaraa.com

22

being a API for graphics based applications. DirectX is another widely used graphics API

developed by Microsoft, Direct3D being the GPU API widely used (DirectX being a collection

of APIs for windows). High Level Shader Language (HLSL) is a shading language developed

by Microsoft that is made for use with Direct3D. HLSL is a collection of various shaders that

can be used to for graphics programming. Like OpenGL, Direct3D/HLSL is primarily a graph-

ics programming language not a interface for general purpose graphics programming. Brook

which was discussed briefly before, is a C-like programming language that focuses on parallel

programming. Brook is similar to CUDA in that it is a programming API that allows for thread

and data parallelism and was not designed for graphics processing like OpenGL and Direct3D.

5.2.1 CUDA GPU Acceleration

Many papers have been published on the use of CUDA for application acceleration. In [17]

CUDA is used with MATrix LABoratory (MATLAB) to do 2D wavelet-based medical image

compression. Using CUDA with MATLAB for 2D image compression they were able to see

large potential in the parallel architecture of the GPU along with future potential for 3D and

4D images. Virtual machines are used more and more in companies and educational envi-

ronments to allow many users to log into one machine without affecting each-other. Virtual

CUDA (vCUDA) was created to accelerate High Performance Computing (HPC) and give the

user access to hardware acceleration [18]. Using vCUDA they were able to access graphics

hardware from the virtual machine and were able to get nearly identical performance as the

non-virtual machine environment.

Image registration is an important topic in the medical area. A preferred tool for solving

linear image registration problems is the FMRIB’s Linear Image Registration Tool (FLIRT)

[19]. A major drawback of this tool, however, is its time to run which makes it perfect for a

CUDA optimization task. Using CUDA they were able to obtain a 10x speed up by optimizing

the algorithm for a parallel architecture. Given that CUDA is a graphics based API, image top-

ics are very common; algorithm and computation performance improvements are often desired

and CUDA can be a great environment for that type of optimization. One time-consuming

www.manaraa.com

23

equation set is the advective-diffusion equation (A-DE) calculation. This equation is used as a

description of pollutant behavior in the atmosphere [20]. These computations are done using

numerical integration and could require a long period of time. In the paper the researchers

were able to parallelize much of the equations and see large results in using a highly paralleled

architecture like CUDA.

In [21], a weather climate and prediction software piece is modified onto CUDA and run on

multiple NVIDIA GPUs achieving up to eight times faster performance then the GPP. A 3D

imaging algorithm called Fast Iterative Reconstruction Software for Tomography (FIRST) is

used for forward and backward image reconstruction [22]. Using CUDA and the GPU with vary-

ing NVIDIA chip-sets, the parallel GPU threads showed a speed up of up to thirty-five times.

A just-noticeable-distortion (JND) based video carving algorithm for real time re-targeting is

used to display video at different resolutions on different displays [23]. The researchers were

able to prove its high parallelization ability as well as its performance improvements using the

CUDA GPU architecture. [24] used a CUDA/OpenCL GPU programming environment for

work on dense linear algebra equations that involve solving multiple equations for multiple

unknowns. They did not obtain a certain speed up so much as prove that using a CPU + GPU

in tandem can gain performance improvement, however, they were able to show it does scale

well in providing increased performance when adding-in more processors. [25] implemented a

Fine-Grained parallel Immune Algorithm (FGIA) which is used for solving complicated opti-

mization problems. Using CUDA on a GPU, depending on the given problem, they were able

to see speed up of two to eleven times over a CPU.

In [26] a Finite Element Navier-Stokes solver, they originally had an algorithm implemented

in OpenGL and ported it to CUDA. Using the accelerated algorithm on CUDA they were able

to see a speed up of up to twelve times. Zernike moments are transcendental digital image de-

scriptors used in biomedical image processing that take-up extensive computation time. Using

CUDA [27] was able to achieve speed up of 300 to 500 times faster then the CPU algorithm.

A real-time forest simulation for a flight simulator shown in [28] looked to see the speed up

given from using a CUDA-related GPU for performance speed up. Using CUDA a significant

www.manaraa.com

24

speed up was seen over a Pentium 4 and Core 2 Duo GPP and they were able to achieve near

real-time results. [29] used CUDA to gain a speed up on the Particle Swarm - Pattern search

optimization (PS2) algorithm proving that the algorithm can be parallelized on a GPU. [30]

used CUDA to introduce a dense deformable registration for automatic segmentation of detailed

brain structures. Using a CUDA based GPU, segmentation took eight minutes opposed to an

excess of two hours on a typical GPP based run. Finally, [31] used CUDA to parallelize the

EFIE (electric field integral equation) for solving two-dimensional conducting body problems.

In their matrix-fill equations, speed up was 150 to 260 times better, whereas the conjugate

gradient solver only gained 1.25 to 20 times.

5.2.2 Other GPU Acceleration Techniques

CUDA isn’t the only development environment for doing GPU computing, other shad-

ing languages are used that operate differently then CUDA. [32] used OpenGL to optimize a

Finite-Difference Time-Domain (FDTD) algorithm. The algorithm is a two dimensional elec-

tromagnetic scattering problem that can be very slow at simulating on GPPs. In [33] OpenGL

was also used as a graphics programming interface for real time 3D imaging. Using a GPU,

more features were able to be tracked on a GPU than a CPU, which gave accurate and detailed

images. The High Level Shader Language (HLSL) and DirectX9.0c were used in [34]. The

paper implemented Fast Fourier Transforms (FFT) and Convolution for image filtering on a

GPU and saw an average speed up of 7.4 over a normal 32bit CPU. In [35], Brook was used,

which acts as an extension of C for programing on GPU environments. They were able to

speed up Method of Moments (MoM) calculations for electromagnetic scattering by over 100

times by using Brook on a high performance NVIDIA GPU. [36] used OpenGL to accelerate

Time-Domain Finite Element Methods(TD-FEM) simulations. Increasing the number of nodes

in their simulation they were able to achieve sizable performance of up to seven times greater

than a CPU implementation.

www.manaraa.com

25

5.3 SDR + GPU Related Work

In the previous sections, examples have been given of various SDR frameworks for design-

ing and testing SDR, generally in an open source software realm. Examples have also been

shown that demonstrate the ability to use GPU to optimize and improve performance of vari-

ous applications, generally ones that are computationally intensive and require extensive GPP

computation time. These sections aim to combine the two into one and show examples of SDR

and GPU integrated together, which directly relates to what this paper aims to demonstrate.

In [37] a design change is proposed to change the implementation of the SDR modem

from a DSP or FPGA to a GPU. Their design is meant to be generic and apply to various

SDR applications but is applied directly to a Worldwide Interoperability for Microwave Access

(WIMAX) implementation. [37] decided to use a GPU implementation over a GPP implemen-

tation even though modern CPUs with dual or quad core processors have enough power to run

an SDR modem. Since the GPU is already tasked with multiple processes like other parts of

the application, drivers, OS etc offloading processing of the CPU onto other components can

be beneficial. Using the GPU lets the designer take advantage of the parallelism of the GPU

architecture. Like many other GPU implementations, this one uses the NVIDIA CUDA SDK

for its GPU API. The algorithm executed on the GPU and also on a Texas Instruments (TI)

DSP was a viterbi decoder. Viewing just throughput of the decoder on each, the GPU could

handle 181.6Mb/s where the DSP could only do 2.07Mb/s showing a substantial improvement.

As for their actual implementation performance, the GPU out-performs the DSP across the

board performing the same tasks in just a fraction of the time. The authors point out that as

SDR evolves the high cost and low overall processing performance of the DSP and the FPGA

creates the bottleneck of the radio, and running on a GPU helps alleviate this problem.

[38] shows a framework on a desktop PC of using a GPU to implement a FM receiver based

on a desktop PC. Using the GPU and other components the authors’ goal is to create an ar-

chitecture which is parallel and easily scalable. Portions of the new architecture were run on

the GPU using the CUDA API. They were able to see large performance increases from their

previous design due to the GPU’s parallelism. Their future goal is to port more of the receiver

www.manaraa.com

26

onto the GPU to extend their performance improvement even farther.

In [39] a 802.11n implementation is taken that had been executed on a GPP and a portion

of the protocol is run on a 128 core GPU to compare performance against the GPP. The writers

of the paper implemented the PHY algorithms on the GPU as well as investigated using the

GPU as a networking device to see how the performance of each aspect would be affected. The

authors chose CUDA as the programming API to implement the Multiple-Input and Multiple-

Output Orthogonal Frequency-Division Multiplexing (MIMO-OFDM) portion of the 802.11n

PHY algorithm. Using the CDUA API, the CUDA implementation was able to outperform

the CPU eight to nine times over. Using the GPU as a networking device they effectively

integrated the GPU implementation of MIMO-OFDM with an external network interface and

web browser. The authors were able to run the simulator in user-mode only which reduced

some of the potential performance gain. This is true because much of the CUDA functionality

is lost when run in user-mode since it allows function calls that are not able to be made when

running completely on the device.

As briefly seen in previous papers, MIMO is a technique that can be used to increase the

throughput of a wireless network by using multiple antennas for both the transmitter and re-

ceiver [40]. [40] realized that MIMO requires computationally intensive detectors and must be

flexible enough to be used in a variety of applications. Most MIMO designs are done on ASICs

that have an average throughput of 73Mbps with a signal-to-noise ration of roughly 20 dB [40].

They determined the most computationally difficult parts of the MIMO receiver are the detec-

tor and channel decoder. Given this fact, they decided to implement the MIMO detector on

the GPU using the CUDA API. They then tested their CUDA detector with various modula-

tions schemes of 4, 16, 64 and 256 Quadrature Amplitude Modulation (QAM) using an average

execution time of over a thousand runs. They then compared their results to various ASCIs,

Application-Specific Instruction-Set Processor (ASIP), and FPGAs. Generally the ASIC could

gain higher throughput with fewer hardware resources but could not scale well to an increas-

ing number of antennas and different modulation types. Depending on the implementation,

the slight loss in throughput may be a wash in the scheme of things if extensibility is a more

www.manaraa.com

27

important trait.

Low-Desity Parity-Check (LDPC) error correcting codes were created in the 1960’s but

until recently were never used in communications due to the high computation performance

requirements [41]. LDPC decoders can be done in Very-Large-Scale Integration (VLSI) but the

costs of such an implementation can be quite significant. In [41] they propose a methodology for

LDPC using the CUDA API to allow simultaneous multi-word decoding. WiMax, which is also

coined 4G in the cell phone market, is an application that uses LDPC decoders implemented

in an ASIC format. The authors used a min-sum algorithm to do their comparisons between

existing costly ASIC designs and their proposed CUDA design. Running simulation examples

on the GPU showed 100Mbps and up throughput which competes well with many of the ASIC

implementations on the market today. It is also mentioned that GPUs on the market at the

time that the paper was written have twice as many cores as the GPU they used for testing

and simulation which they predict would yield even better results than has already been seen.

The main drawback they saw on the GPU implementation is when having so many concurrent

processes running and accessing memory at the same time, the memory access time becomes

the bottleneck of the system.

www.manaraa.com

28

CHAPTER 6. Experimental Setup

Porting OSSIE components from C++ to CUDA requires setup processing prior to the

actual CUDA procedure call, which minus the input parameters to the function, were nearly

identical between all the components ported. In each component their is a process data function

which is typically used in the OSSIE component for general computation. This function is

modified to call into the CUDA portion of the software. Any data that is passed into CUDA

has to be done through pointers; this requires pointers to be declared in the process data

function for any data that needs to be copied into GPU memory space. The CUDA setup code

needs to initialize the memory for the CUDA device and then pass the CUDA pointers into the

CUDA based function call. Any input parameters needing to be passed into the function must

have memory allocated for it in both the GPP memory space and the GPU memory space.

The process data function uses the PortTypes::ShortSequence class which use for creating

a CORBA-based stream of data contained in 16bit words. This class has various overloaded

functions to make it easier to put data in and get data out, very similar to a C++ vector

or dequeue. The get buffer function in PortTypes::ShortSequence is used to get the pointer

to the desired data; this is needed to use the memcpy function to get data into or out of a

CORBA sequence. Using the get buffer() function allows the developer to pass the pointer

into the CUDA function alleviating unnecessary memory copies of the data. This also allows

data coming out of the function to be operated on with the same pointer that will be used to

transfer data to the next connected component.

The CUDA function called from the process data function needs to be declared inside of

a .cu file. For the function to be seen by other object files and for the executable to link, the

function being called needs to be declared as extern. This way the linker knows where the

www.manaraa.com

29

function resides that it is trying to call since they functions are not contained within the same

object file. Below is an example of how the setup code could be done, an explanation will follow

below:

extern "C"

void runCude(short* inputPtr, short* outputPtr)

{

CUmodule cuModule;

CUfunction someFunc;

CUdeviceptr inputDevPtr;

CUdeviceptr outputDevPtr;

unsigned int timer = 0;

float timerval;

cutCreateTimer(&timer);

//Inititalize GPU Device

cuInit(0);

CUdevice device;

//Create object of device

cuDeviceGet(&device,0);

CUcontext pctx;

//get context based on device, using auto scheduling

cuCtxCreate(&pctx, CU_CTX_SCHED_AUTO, device);

//Load the cubin file into module

cuModuleLoad(&cuModule, "/home/pathToCubinFile/something.cubin");

www.manaraa.com

30

//Get a specfic function out of the cubin file

cuModuleGetFunction(&someFunc, cuModule, "functionName");

//Allocate memory for device pointers

cuMemAlloc(&inputDevPtr, someNumberOfBytes);

cuMemAlloc(&outputDevPtr, someNumberOfBytes);

//Setup size of first function parameter

cuParamSeti(someFunc, 0, inputDevPtr);

cuParamSeti(someFunc,8, outputDevPtr); //Always use offset of 8 for pointers

//Set end length

cuParamSetSize(someFunc,16);

//Copy any data in host pointers into device pointers

cuMemcpyHtoD(inputDevPtr, inputPtr, sameNumberOfBytesAsAllocated);

cuMemcpyHtoD(outputDevPtr, outputPtr, sameNumberOfBytesAsAllocated);

//Determine thread block layout

cuFuncSetBlockShape(someFunc, xSize, ySize, zSize);

//Start Timer

cutStartTimer(timer);

//Launch the function with a specified grid of thread blocks

cuLaunchGrid(someFunc, xSize, ySize);

//this blocks device until all prior tasks are completed

www.manaraa.com

31

cuCtxSynchronize();

//stop timer

timerval = cutGetTimerValue(timer);

printf("Done in %f (ms) \n", timerval);

//Copy any output or changed data back to the host

cuMemcpyDtoH(inputPtr, inputDevPtr, sameNumberOfBytesAsAllocated);

cuMemcpyDtoH(outputPtr, outputDevPtr, sameNumberOfBytesAsAllocated);

//Free any Device poiters and destroy the context

cuMemFree(inputDevPtr);

cuMemFree(outputDevPtr);

cuCtxDestroy(pctx);

}

The example above is code that could be used to setup a CUDA function which has two input

parameters. The function, no matter how it will behave, is setup the same way initially. The

GPU device object is created by the cuInit() function. This initializes the GPU device to be

used by the host software. A CUdevice object is created and passed into cuDeviceGet. This

call passes the parameter by reference in order to populate the CUdevice object with the avail-

able CUDA device. To tell CUDA how to operate the task scheduler, cuCtxCreate needs to be

called. The cuCtxCreate function takes in three inputs. First, is a CUcontext object which is

passed in by reference. Second, is a parameter which identifies what type of scheduling will be

used in CUDA to arbitrate thread blocks on the GPU. Finally, a third object is passed which is

the CUdevice object initialized by cuDeviceGet. Figure 6, adapted from [3], shows how threads

in a GPU block form an x by y grid of threads. The threads then create multiple blocks which

all contain the exact same threads.

The scheduling of how the thread blocks are switched in and out of the GPU is generated

www.manaraa.com

32

Figure 6.1 CUDA grid thread and thread blocks [3]

by the thread scheduler, a parameter set in the cuCtxCreate function. When defining the

scheduling parameter, multiple options exist, one being CU CTX SCHED AUTO which is the

default value to the function. This uses a heuristic that is determined by the number of active

CUDA contexts in the given process and the number of logical processors. If the number of

processes is greater than the number of logical processors, CUDA will allow other OS threads

to run when it is waiting for the GPU to finish its computation. If this doesn’t occur, it will

simply let the processor spin and wait until the computation is complete which can be a waste

of CPU cycles depending upon the desired implementation [42]. If the CU CTX SCHED SPIN

www.manaraa.com

33

scheduler is used, it notifies CUDA that it should spin in its thread and wait until it gets results

back from the GPU [42]. The CU CTX SCHED YIELD scheduler instructs CUDA to pause

in its thread while waiting for results from the GPU [42]. The CU CTX BLOCKING SYNC

scheduler tells CUDA to block the CPU thread on a semaphore while it is waiting for the GPU

to finish its computation [42]. Using CU CTX BLOCKING SYNC syncs the GPU device into

the calling CPU thread. The third parameter to the cuCtxCreate is the device object that was

returned from the cuDeviceGet function.

Once the GPU has been initialized and configured, the module can now be loaded. The

function called to execute this is cuModuleLoad; it is passed the CUModule object by reference,

which is populated by the function. The other parameter passed is the path to the .cubin file;

this file is generated by the nvcc compiler. The .cubin file can be named and placed wherever

the developer would like; at runtime when cuModuleLoad is called it reads this .cubin file which

tells it what CUDA global functions are available to call. This file is created by passing the

-cubin argument to the compiler opposed to -c which is normally passed to generate a .o file.

In order to abstract-out the desired function that is to be called by CUDA, the cuMod-

uleGetFunction needs to be called. This process uses the CUModule object initialized by

cuModuleLoad to locate the desired function defined in the .cubin file. To use any CUDA func-

tion, the cuModuleGetFunction has to be called individually for each function. This function

takes in a CUfunction object, which is populated by the function as an object to be used by

the developer for calling the specified function. Besides passing in the CuModule, a string is

also passed that is the name of the CUDA function that is desired to be abstracted out of the

cubin file. At his point a object for each function in the GPU is created that can be used to

execute the respective functions.

Initializing and configuring the GPU device is the portion of the GPU configuration that

should be common among all CUDA function calls. The portion where the GPU setup differs

is setting up memory on the GPU device. For every input or output parameter used on the

device, a CUdeviceptr object needs to be created which acts as a pointer to memory within the

GPU. To allocate any GPU memory, cuMemAlloc needs to be called on each CUdeviceptr to

www.manaraa.com

34

reserve the desired amount of memory, just as a C malloc or C++ new call would be used on

the GPP. These functions take in the reference of the deviceptr as well as the desired number

of bytes to allocate just as the C and C++ variants would.

One of the large differences between C and CUDA is that allocating memory for use on the

device is not all the developer is required to do to call the function with the correct parameters.

In CUDA the device needs to be instructed of what size the data is which will be passed into

each function being used. To accomplish this, the cuParamSeti function is used; this takes

in the function name for which the data is being declared for, the offset for the input, and

the CUdeviceptr that will be its input. The offset passed into this function needs to corre-

late the order of parameters of the function being called. If done incorrectly, the data will go

in and out of the wrong memory locations. For example, the first input would be cuParam-

Seti(function,0,input1) because it is the first parameter the offset zero. A note to make here

is that for CUDA to align the data correctly, typically an offset of eight needs to be used for

each input. Since CUDA defaults to 64bit pointers, a pointer of data less in size still needs to

be defined in the cuParamSeti function as needing a 64bit offset. The CUdeviceptr is 64bits in

width so if the offsets are not the desired data size (like 16bits for a short), the data becomes

misaligned and the data read into and out of the function becomes incorrect. This does not

appear to be documented in any of the CUDA reference guides but is the result of the CUDA

implementation used in this paper. To complete the pointer alignment setup by cuParamSeti

another function needs to be called. The cuParamSetSize function is used to finalize the set of

parameters. The cuParamSetSize function defines the total length (in bytes) of all parameters

being used in the function. To determine the total length of the parameters, the sum of the

number of inputs and outputs used and their respective data sizes are required. For example,

with 5 input parameters each offset 8, would require 40 to be passed, 8 past the last input

parameter.

Since any data that was allocated on the devicePtrs is currently empty, any data held by

the host that needs to be used in the CUDA function has to be copied into the devicePtrs.

This allows any parameters that were inputs or inputs/outputs to have the data available that

www.manaraa.com

35

is required by the GPU. For every parameter this is required for, the cuMemcpyHtoD function

is called. This works like a standard memcpy used in C or C++.

To use the power of CUDA, multiple thread blocks need to be used to take advantage of

the parallelism. To accomplish this, the parameters of the thread blocks which are doing the

computation need to be set. This essentially defines how large the thread block can be in terms

of x, y and z parameters (or a 3-dimensional block). A thread block can have a maximum of 512

threads [3] which is an important note to keep in mind when setting up the block size. When

a C for loop is implemented in CUDA it is done so that each thread can do one loop iteration

(ideally) so up to 512 can run concurrently. A given system can have any number of blocks,

but those thread blocks are switched in and out by CUDA (similar to how a OS switches out

processes). This is important to note because even if a developer has multiple thread blocks of

512 threads, no more then one thread block can be running at a time, essentially limiting 512

threads to running concurrently. Keeping this in mind when defining a thread block, it needs

to be determined what the dimension of array the threads will be operating over. If it is only

one, only threads for the x direction are needed, if it is 2-dimension, x and y would be required

and etc. The cuFuncSetBlockShape function takes in the function that is going to be called,

as well as x, y and z values which define the dimension to be used. As an example, a for loop

over a 1-dimensional array 500 times could easily be done as 500,1,1 where 500 is the x value

and 1 is the value of y and z.

Depending on the use of the developer, timing data may or may not need to be recorded.

The function to record time is cutStartTimer; this is executed after cutCreateTimer is called

on an unsigned int timer object. This call simply initializes the timer object to start counting

from this point forward after being initially called. If the developer wishes to measure the time

of execution for the CUDA function only, the function should be called prior to cuLaunchGrid

and cuCtxSynchronize. Doing so would gather time of execution for only the execution of the

function used and nothing else. The time granularity here is returned in milliseconds and this

data can then be saved off or printed out for the user to view.

All of the functions stated up to this point are needed to setup and initialize the GPU

www.manaraa.com

36

for running the function. To actually invoke the GPU kernel two functions need to be called,

cuLaunchGrid and cuCtxSynchronize. The function cuLaunchGrid takes in the function that

is going to be called, as well as the width and height of the thread blocks. In other words a

2-dimensional number that defines the number of thread blocks, recalling here that cuFunc-

SetBlockShape actually defined the 3-dimensional size of the thread blocks themselves. The

other function is cuCtxSynchronize; this function is used to block until the device has com-

pleted executing all the previously requested tasks [42]. If the cuCtxCreate was called using

the CU CTX BLOCKING SYNC flag, then the CPU thread will continue to block until the

GPU has finished all its computation. These previous two functions call into whatever function

in the GPU that has been defined for use using the global directive. Once this function

is completed by all the defined threads, control returns back to the host function.

Any data that is computed and created by the GPU function will be stored in GPU mem-

ory space upon completion of the function. To gather the data out of CUDA, the data has

to be copied out of the CUdeviceptr and into the C or C++ pointers. To accomplish this the

function cuMemcpyDtoH is used. This function works the same way as cuMemcpyHtoD but

copies in the other direction. This then ensures that all the data has been copied out of CUDA

memory and back into GPP memory space and can be returned for further GPP modification.

To verify no memory leaks exist in the software being created, some memory cleanup should

be done by the developer. For all CudevicePtrs the cuMemFree function should be used which

acts like a C free call or a C++ delete. The cuCtxDestory function should also be called and

passing it in the context that was previously created in cuCtxCreate. This closes the device

for further use until a new context is created.

A general note on the CUDA setup is that each function throws various error codes upon

success or failure, and the cuda.h file from the SDK specifies what each value means. A

CUDA SUCCESS, or 0, is returned for a successful function call. Various other error codes

could be returned upon an error or failure case. Checking the return values of each function

can be extremely helpful for debugging by simply checking return values for non-zero numbers.

If performance data is desired by the developer or information on GPU usage is necessary, the

www.manaraa.com

37

environment variable CUDA PROFILE can be used. Defining the variable and setting it to

“1” enables the profiling and setting it to “0” disables it. This outputs a file into the running

directory where the CUDA software is executed and gives performance characteristics. The file

shows the the execution time of any CUDA functions ran on the GPU as well as any of the C

software ran before or after the call. With each function call time for CUDA it also shows how

much of the GPU (in a percentage) was used to execute that function. This becomes quite

useful since it is generally desired to have the GPU not fully utilized to 100% capacity. Seeing

the runtime results can help the developer try different block and thread sizes to find the most

optimized result.

Up to this point, setup for the CUDA device and how to gather debug and performance

data has been stated in detail. This only defines initial function operation; actual design and

programming of the computation of the CUDA function needs to be done as well. Each compo-

nent will implement a different set of functionality but since most of the components loop over

a 1-dimensional I and Q channel, the overall for loop setup remains the same. In C++ or C,

a for loop is usually defined using the syntax of for(...). The loop will then run a number

of loop iterations over some dimensional array, where the CPU processes each one individually

and consecutively, assuming no specific compiler optimizations. On CUDA, since up to 512

threads can run concurrently at the disposal of the developer, it is no longer necessary to do

the looping sequentially. CUDA has three built-in objects to index threads within blocks and

to determine which block is used. This is done by using blockIdx, blockDim, and threadIdx.

Each of these is a three dimensional object which has attributes of x, y and z. When blockIdx

and blockDim are used, they are multiplied by each other for a specified dimension to give a

specific block’s x component. The threadIdx object, also in the same dimension, is then added

onto the product of the previous two to give a value of the current thread that is executing

on that block. For example, if a 2-dimensional loop is needed, a variable, ”i” , could be cre-

ated and initialized so: i = blockIdx.x * blockDim.x + threadIdx.x, and then ”j” could

be initialized as: j = blockIdx.y * blockDim.y + threadIdx.y. The variables ”i” and ”j”

would then be used to index the arrays just as they would have done previously within the

www.manaraa.com

38

for loop. This could be extended into the z dimension as well, to account for a 3-dimensional

thread block. The array indexes still need to be in an if statement to check against the size

of the data that needs to be computed. This is simply done by passing the length into the

CUDA function as an input, especially since the length will already need to be known to copy

the correct amount of data in and out of the GPU memory. 6, used from [3], shows how the

serial host SW (the C code) executes between CUDA calls. The figure, 6, demonstrates how

the SW can move in and out of the GPU computation.

Figure 6.2 CUDA program execution between CUDA and C [3]

OSSIE is setup to automatically build the necessary configuration and make files for each

component. This works well for the standard configuration of the components, but this requires

www.manaraa.com

39

some changing to have the make files and configure files work correctly for CUDA. The main

things that have to be changed within the build are that nvcc (which is the CUDA compiler)

should be used in place of the normal g++ compiler. The nvcc compiler needs to be used for all

CUDA files, as well as linking the executable, whereas the g++ compiler is only used for C and

C++ file compilation. It is possible to use g++ for the linker, but this requires finding all the

necessary libraries which becomes hard to identify. In its current implementation, the make file

will not correctly identify when a CUDA file needs to be rebuilt and relinked. A simple way to

get around this is to have the CUDA file built every time a C or C++ file is touched. This way,

anytime a C or C++ file is changed, all CUDA files are rebuilt, with the C/C++ file and then

the executable is re-linked. The CUDA object file, as well as the CUDA library (cuda.a) and

the cutil library (cutil x86 64 on a 64bit operating system), all must be added to the linker list

when the application is linked. The CUDA library is necessary so that links from the standard

CUDA operations that are needed for CUDA function calls are included. The cutil library is

required for the timer function and any other CUDA utilities functions. For each CUDA file,

the nvcc compiler must to be invoked twice, once to generate the -cubin file which is then used

to load the function which is called from C or C++. The second time is to actually build the

object file that is used in the linker. Other parameters need to be passed for the application

to link correctly: -Xcompiler -D builtin stdarg start= builtin va start . This seems

to be necessary due to CUDA not being able to correctly figure out where the main function is

located in CUDA 3.1 when it is located in a .cu file. Adding the specified flag to the compiler

arguments seemed to alleviate the problem for use in this research. The above is all that is

necessary to change the make files to build and link with the CUDA compiler.

Generally, if performance and timing data is being gathered in CUDA, it is desired that

similar data is recorded in the C and C++ so the two can be compared. To acquire C++

performance, significant less work is required; the process data portion of each component is

removed and put into a standalone main.cpp file to be made into a standalone executable.

Creating a standalone application makes it easier to get only the performance data desired and

not have to run the entire WF in OSSIE to gather the results. The main function only creates

www.manaraa.com

40

classes as the normal component would: start the C++ timer function, run the for loop over

the data, stop the timer, and display the results. The displayed results are also in the same

time granularity to make the comparison of data easier.

Each component below is optimized in the same way for two reasons of reasons. One, it

makes it easy to compare between performance in components since the same optimization is

done for each. Second, it is the simplest way to optimize a looping based component. The

original code inside of the process data function appeared as shown below:

void process_data(void *data)

{

PortTypes::ShortSequence I_out, Q_out;

while(1)

{

PortTypes::ShortSequence *I_in(NULL), *Q_in(NULL);

channel->dataIn->getData(I_in, Q_in); //Gets RX data;

I_out.length(I_in->length());

Q_out.length(Q_in->length());

for(int i = 0; i < I_in->length(); ++i)

{

//Do what ever processing is necessary

//Setting I_out and Q_out as the result values

}

channel->dataOut->pushPacked(I_out,Q_out);

}

}

Each component below would then have different code inside of that for loop. The code here

is only modified slightly. All of the code inside that for loop is removed and put into an

external CUDA function call and replaces the code in the for loop as shown below:

unsigned short* length = (unsigned short*)malloc(2);

www.manaraa.com

41

*length = I_in->length();

runCuda(I_in->getBuffer(), Q_in->getBuffer(),

I_out.getBuffer(), Q_out.getBuffer(), length);

free(length);

Note here that the getBuffer attribute of the PortTypes::ShortSequence returns a pointer to the

objects help within the sequence. Since CUDA does not understand this data type, the length

needs to be passed in separately. The for loop that was removed needs to be put somewhere,

that is in the new CUDA function called from runCuda, or in the example shown above the

”someFunc” function, this function, derived from the for loop becomes:

extern "C"

__global__ void someFunc(short * inputPtr, short * outputPtr, short * length)

{

int i = blockIdx.x * blockDim.x + threadIdx.x;

if(i < *length)

{

//Do the same processing here as before

}

}

Doing this allows each thread in a thread block currently running on the GPU to take a given

index i, determined by the blockIdx, blockDim and threadIdx and compute that one iteration

of code. Multiple dimension arrays can be done using the y and z portions of those objects,

but all the components shown are one dimension arrays.

In 6, a flow diagram is shown of how the flow of execution from the host side SW, to

CUDA setup, CUDA execution, destroying the CUDA interface, and then returning to host

side execution. Each of the components in the following subsections contains this flow of

execution.

www.manaraa.com

42

Figure 6.3 Example execution of OSSIE Components

6.1 AM Demodulation Component

The AM demodulation component, is a component used to demodulate an AM signal re-

ceived over the air. AM (Amplitude Modulation) is a signal which is amplitude (linearly)

modulated. A modulated signal is just simply spectral shifting the signal to gain certain ad-

vantages, i.e. making the signal easier to receive, etc [43]. AM demodulation then is simply

extracting out the data inside of the carrier signal. This is accomplished quite easily, as AM

demodulation is one of the easier modulation methods.

Once the component is setup from the above section, it is quite similar to the general C++

function that it was derived from. Using the thread and block indexes described above, the

for loop is turned into a one-dimensional thread block and thread id index. The AM Demod-

ulation is relatively simple in itself. For each element the I channel is taken and multiplied

by half of the I channel, the same is done for the Q channel element and then they are added

together. The output of this is then square rooted and set to the I channel output for that

www.manaraa.com

43

element. Next, the I output value is checked against a max value, which is initially zero, and

each time the I output channel is greater then the old max value, the max value is updated to

what the current I output value is. Next the Q output is set to be what the I output is. This is

repeated using the blockIdx, blockDim and the threadIdx of the x dimension only. Each loop

is checked against the max length desired to ensure only necessary data is operated on. The

length is passed in from the C++ code based on the length given from the CORBA uses port

from the previous component.

6.2 FM Demodulation Component

The FM demodulation component, once again, is a component used to demodulate a mod-

ulated signal. However, this time instead of amplitude modulation, it is done using Frequency

Modulation (FM). FM signals carry information on the carrier wave by varying its frequency,

which is different from AM since in AM the frequency is always constant but the amplitude

varies [43].

This component, as well, resembles its C++ version very closely; same as before using the

thread block and thread id index, the sequential for loop is able to be transposed into a

parallel operation. The FM component works as so; the I and Q input signals are passed into

the function. For each element in the I and Q channel the atan2 is computed based on two

inputs. The first input is done by using the current I channel multiplied by the previous I

channel added to the current Q channel minus the previous Q channel. The second component

is the previous I channel multiplied by the current Q channel then subtracted from the current

I channel multiplied by the previous Q channel. This is all multiplied by 5000 to acquire the

current I channel output. It is important to note that for the very first I channel element that

the I out value is just zero since the algorithm implemented here is designed around the ability

to use past elements. The Q output channel is then just set to be what the I channel was. The

remainder of the component operation is the same; the passed in length is used to determine

what thread in the GPU handles which component index.

www.manaraa.com

44

6.3 Amplifier Component

The amplifier component is a component simply used to amplify the I and Q channel signals

coming into it and pass the amplified signals out of it. This amplified value is passed into the

component using CORBA but the value is defined in its XML in the .prf file, which is the

properties file as stated previously. This component is setup like the others, turning the for

loop into a parallel operation by using the thread blocks and thread indexes. The I and Q

channels are once again passed in with their given lengths. This length value is used to define

the number of operations, or threads needed, to complete the amplification. Each iteration just

multiplies the I and Q channels by the desired signal gain, then proceeds to set the I and Q

output values to the new computed signal value. These these values are next pushed onto the

next CORBA component.

6.4 Decimator Component

The decimator component is used to compress the signal by picking and removing samples

of the signal, also referred to as down-sampling. This can only be done for discrete time signals

(digital signals), and it is generally accomplished by low pass filtering the signal and then

down-sampling [43].

The decimator component works exactly as described above and the data is taken in via

CORBA as an I and Q channel. The value used by the decimator to determine the coefficient

to decimate by is passed in like the amplifier component, through the .prf XML file. Both the

I and Q channel elements, as well as their lengths, are passed into the function. The I and Q

channels, element by element, are passed into the Finite Impulse Response (FIR) filter.

The FIR filter is simply a discrete time filter where the filter coefficients determine what the

filters impulse response is [43]. The coefficients for the FIR filter are specified by the decimator

value multiplied by 8 and then added by one. The component then calls DesignRRCFilter

which creates a root raised-cosine filter based on the desired samples per symbol, the delay,

and roll off factor (this is between 0 and 1). Next, this populates a fourth parameter which

ends up being the coefficients needed for the decimator. For the decimator, the roll off factor

www.manaraa.com

45

(or beta) is always equal to 0.5, the delay is always 2, and the samples per symbol is 2 times the

decimating factor. This is initialized prior to any data being accepted by the component. Each

FIR filter output gives the response of that specific I or Q element; which is accomplished by

taking each I and Q input separately and multiplying each element passed in by each coefficient

and summing this number up and passing it as the output. This is set to the I and Q respective

output parameters, which are then passed out of the GPU and onto the next component. The

decimator is optimized as the other components by transforming the for loop into data that

can be computed on individually by each thread.

6.5 Interpolator Component

The Interpolator component is used to construct new samples of data within an already

existing signal data range. Interpolation is used to expand the signal. For example, in the case

where certain data points in a given range were missing. The XML .prf file is used to configure

the interpolator component just as the other components did. The interpolator factor, the

shape of the filter, symbol delay, and the bandwidth factor can all be set and passed in through

XML. The interpolator works by filtering the I and Q elements that are already obtained by

utilizing user defined coefficients, but for all the new data points, a value of zero is input into

the filter to generate the predicted output signal elements.

The interpolator component works the same as the decimator, by grabbing data, filtering

on it, and then passing the data on. The filter is initialized in a similar way by using the XML

parameters to configure the FIR filter coefficients by calling the DesignRRCFilter just as the

decimator did. The difference is this time none of the parameters are defaulted but instead

every single parameter to the filter is passed in through the XML. This component, however,

processes the data differently though it loops over the entire length of I and Q sample as the

decimator did. It now computes a FIR filter value, and then uses the symbol delay to insert a

value of 0 into the FIR filter to generate output samples for each element of length of symbol

delay. Once this is completed, the data is then passed onto the next component. This also

utilizes the same mentality of modifying the for loop to be processed by parallel threads.

www.manaraa.com

46

CHAPTER 7. Experimental Results

The data gathered from running the components in C++ and CUDA was obtained using

the timer set up in chapter six. The C++ timer uses built in structures to the language that

obtain time from the operating system. The Linux function gettimeofday populates the timeval

struct by obtaining time since the previous Epoch. The function gettimeofday is called before

and after the desired function being measured, just like the CUDA timer. Each call stores the

data in the timeval struct, and then the tv usec element of the struct is subtracted from each

to return the time in terms of nanoseconds.

To make the tests all equal, the same timer functions were used among all the CUDA ap-

plications and all the C++ applications, but the thread blocks also needed to be equal as well.

This was done by creating 500 threads in each thread block. The number of blocks was deter-

mined by taking the number of elements passed in, divided by 500 (number of threads) and

adding 1 to get enough thread blocks to do the entire computation. Doing this showed that the

GPU was using 66.7% utilization for each run. This was viewed using the CUDA PROFILE

variable stated previously. This is important for multiple reasons, one in that each test run

is the same, and two, so that the GPU is not overloaded. If the GPU is running at 100%

utilization it can cause it to run in a non-optimal manner.

Before digging into the performance results, it is important to note that when using the

CUDA PROFILE flag to gather performance results of timing and utilization of the GPU op-

eration causes the run time to be skewed. Generally having the profiling on would cause the

results to be 20% worse. To alleviate this, runs were completed separately to gather the uti-

lization data from the timing data when allowed while the CUDA SW was running. Gathering

this data separately allowed the least amount of overhead to exist.

www.manaraa.com

47

Table 7.1 CPU Performance in milliseconds in power of 2 sample increments
Components 512 1024 2048 4096 8192 16384

AM Demodulation 0.024 0.041 0.081 0.158 0.308 0.603

FM Demodulation 0.019 0.033 0.069 0.135 0.261 0.516

Amplifier (Gain = 10) 0.006 0.011 0.028 0.058 0.112 0.223

Decimator (Factor = 10) 0.072 0.141 0.293 0.572 1.136 2.266

Interpolator (Factor = 10) 2.771 5.54 10.482 20.14 36.877 71.471

Table 7.2 GPU Performance in milliseconds in power of 2 sample increments
Components 512 1024 2048 4096 8192 16384

AM Demodulation 0.039 0.041 0.047 0.066 0.083 0.131

FM Demodulation 0.044 0.045 0.051 0.076 0.104 0.177

Amplifier (Gain = 10) 0.038 0.043 0.052 0.077 0.112 0.183

Decimator (Factor = 10) 0.353 0.359 0.404 0.460 0.826 1.37

Interpolator (Factor = 10) 1.152 1.734 3.322 6.419 14.873 24.87

Table 7.1 contains all of the performance data obtained in running the components on the

CPU. The sample data was inserted into the component starting at 512 and doubling up to

16384. 512 was used as the starting sample size since most of the demo WFs in OSSIE used

512 as a sample size. The AM and FM Demodulation components had no specific parameters

that needed to be incorporated like the amplifier, decimator and interpolator components did.

For the three components that did, a value of 10 was used for the gain in the amplifier and the

factor in the decimator and the interpolator. These same values were used when acquiring the

GPU performance results as well. The setup CPU performance data was run on a Intel Core

2 Duo E6750 at 2.66Ghz with 4GB of RAM. The GPU was run on a GeForce 8800 GTS with

512Mhz shader clock, 320MB of video memory and 96 CUDA cores to be used.

To comment briefly on the data itself, in all the components, no matter the complexity,

the time of execution increased linearly doubling as the sample size was doubled. This is to

be expected given the sequential nature of the CPU. The CPU can only execute one thread

at a time so any additional data cannot be sped up by running multiple threads like they can

be in the GPU. It is also worth noting that the interpolator results are somewhat deceiving

because of its long execution time, but this is due to the fact that for each input sample, 10

www.manaraa.com

48

Table 7.3 GPU Setup in Milliseconds
Components Device Setup Mem Setup Mem Setup Destroy

(Prior) (After)

AM Demodulation 23.95 0.264 0.116 15.303

FM Demodulation 25.26 0.254 0.12 12.91

Amplifier 22.48 0.269 0.111 13.24

Decimator 23.81 0.298 0.112 12.809

Interpolator 23.32 0.313 1.45 14.18

extra samples were created (due to its factor being 10). This is part of the reason it has such

a longer execution time opposed to the decimator.

Now looking at the GPU data in table 7.2, on first look the data is defiantly on the same

order of magnitude as the data seen in table 7.1 but as the data set size increases, the same

trend does not form. This time the execution time does not scale linearly as it did with the

CPU data. The GPU execution time certainly increases as the data set size rises, but at a

significantly slower rate. It is worth noting that on the 512 data set and the 1024 data set,

the GPU has a longer execution time than the CPU. That is due to the cost of making the

CUDA function call, since once the cost of the CUDA call itself can be reclaimed based on

faster performance of the execution of the desired processing, the cost is less apparent. This

is alluded to in the 2048 sample size case, but is seen more in the larger data sets. Depending

on the given component, the GPU can see speed up of 4.6 times in the AM Demodulation

case, but only 1.65 in the Decimator case. This has to do with the sort of computation the

component is doing and how well the GPU can perform at doing it. Depending on what size

data sets are used the GPU can really shine performance wise, but given the sample size used,

the speed up could be very minimal.

In table 7.3, the table shows the execution cost to setup the GPU device, copy data into

GPU device pointers, copy data out of GPU device pointers back into CPU memory, and then

to destroy the GPU device. As can be seen immediately, the cost of creating the GPU device

and destroying the device is quite high; on average 23ms to create and 13ms to destroy. This

cost is the same for all CUDA programs no matter the data size or complexity. The small

variance in time between the runs is due to the difference in components. Though this cost is

www.manaraa.com

49

high, it can just be s accomplished in the constructor and destructor portion of the C++ class.

This allows the cost of the call not to affect the performance of the component in actual op-

eration, only in construction. Generally startup time does not matter, unless there are timing

requirements on how long a radio has to come up and tear down.

The memory setup before and after are the pieces of setup that have to be done for each

component. This entails allocating memory for each input parameter, setting up the size of

the input parameters to be passed, and memory copying any data from the CPU memory

that needs to be in the GPU memory. Since nearly all the components had the same amount

of input parameters, except the decimator and interpolator, the performance was nearly the

same. The decimator and interpolator had three extra input parameters, but as can be seen,

the cost of these extra parameters is minimal. The memory setup after involved copying any

of the data the GPU computed back into the CPU memory space. Since all the components

just computed an updated I and Q channel, the times are nearly all the same, except for the

interpolator component. This is due to the fact that the interpolator created 10 extra samples

for every input sample, dividing the 1.45ms by 10 gives .145ms which is right on par with where

the rest of the components were at.

Figure 7.1 Plot of GPU vs CPU of AM Demodulation Performance

Figure 7 is a plot of the execution time of the GPU performance versus the performance

of the CPU for the AM demodulation component. The GPU is able improve over the GPP on

www.manaraa.com

50

this component as early as 1024 samples, and then increase at a very moderate compared to

the CPU performance.

Figure 7.2 Plot of GPU vs CPU of Amplifier Performance

Figure 7 is a plot of the execution time of the GPU performance versus the performance

of the CPU for the amplifier component. The GPU on this component took a lot longer to

improve over the GPP, all the way up to the 8192 samples, the worst of any the components.

This was most likely due to the simple nature of the component, since is only multiplied the I

and Q channel by a constant; the cost of the CUDA call was very high then in relation to the

computation performed.

Figure 7.3 Plot of GPU vs CPU of FM Demodulation Performance

www.manaraa.com

51

Figure 7 is a plot of the execution time of the GPU performance versus the performance of

the CPU for the FM demodulation component. This component, similar to the AM demodula-

tion component, has the GPU gaining the computational edge around the 1024 sample mark.

From this point on the CPU showed increasingly bad performances in all sample sizes.

Figure 7.4 Plot of GPU vs CPU of Decimator Performance

Figure 7.5 Plot of GPU vs CPU of Interpolator Performance

Figure 7 is a plot of the execution time of the GPU performance versus the performance of

the CPU for the decimation component. The GPU is able to improve over the CPU approxi-

mately 4096 samples, but the GPU performance follows the CPU performance at a consistent

www.manaraa.com

52

rate and does not show as high of a speed up as with other components.

Figure 7 is a plot of the execution time of the GPU performance versus the performance of

the CPU for the interpolator component. This is the one component where the GPU performs

better then the CPU in all the sample sets, and as the sample size increases the GPU perfor-

mance only gets better.

All of the performance data gathered between the five components tested demonstrate that

depending on the computational task of the component, the sample size at which the GPU out-

performs the CPU can vary. However, there is always a point at which the GPU will outperform

the CPU. This becomes more visible as the sample size grows larger in size, the performance

difference becomes more and more apparent.

www.manaraa.com

53

CHAPTER 8. Conclusion and Future Work

Throughout this thesis we have shown how OSSIE can be modified to run SDR compo-

nents on the GPU, opposed of its normal implementation on a GPP. The GPU has shown

performance improvements over the GPP of various magnitudes from the amplitude compo-

nent where it took a significantly large amount of samples to see the performance gain, to

the interpolator component where the improvement was seen almost immediately. This paper

only looked at a small set of components and specific data set within those components. In

this data set though, the original expectations were met. As expected, the CPU performed

worse as the sample sizes were increased. The GPU showed in various component contexts

that even in the simplest of computations, if it can be parallelized, the GPU can improve the

performance. The only question remains is how many samples does it take before the GPU

outperforms. The more computationally intensive or more parallelizable it is, the faster those

results can be obtained. The main down side of using the GPU as a gateway to gaining perfor-

mance improvement, is that designing an embedded SDR which has a Desktop PC connection

is not realistic. Fortunately, given the drastic rise in multimedia applications on cell phones,

an increasing number of embedded devices now have GPUs that contain significant processing

power. Due to this, multiple manufactures are creating powerful embedded GPUs that give the

developers the ability to use GPUs on embedded systems to boost performance in non-graphics

based applications.

This thesis used components in OSSIE that were easily decoupled to make the porting to

the GPU less complex. Future work in this area could be seen in taking the more complicated

components that involve multiple intertwined classes to be decoupled and re-written in a C-like

architecture for CUDA to take advantage of its parallelized architecture. Given the knowledge

www.manaraa.com

54

that has been gained from this paper, porting new, more complex components would be sim-

pler. The initial CUDA hurdles which have already been broken since the main complexity is

getting data in and out of the component. In the beginning of this paper, the way to create

new components in OSSIE was discussed. The components that have been ported in this paper

have been done in a consistent way that would make it even easier to do so in a newly created

component since OSSIE will create the rest of the necessary SCA portions of the component.

This will be of added benefit since the process data portion can be created initially in a manner

that is designed to be used in a parallel way opposed to the typical sequential type of program-

ming used in C and C++.

Though the OSSIE tool contains many components which directly apply to SDR, it is

missing the more advanced components that are commonly used in more complete commercial

SDR implementations. Components that could fall into this category would be applications

like encoders and decoders. Examples are reed-solomon and viterbi as well as encryption and

decryption algorithms like Advanced Encryption Standard (AES) and Data Encryption Stan-

dard (DES). These types of components are commonly used in SDR to improve security to

protect data from intruders listening into a live network. The encoder and decoder algorithms

are used for data parity to ensure that no data is lost between the communication of terminals.

Given the nature of these algorithms, they can be quite computationally intensive and would

fit well in a GPU parallel architecture. The GPU design would greatly improve upon sequential

performance that would be seen in a C++ implementation. These components would provide

great added value to OSSIE given the typical use of SDR and would make OSSIE more dynamic

in its ability to adapt to different types of SDR WFs.

As was brought up earlier, OSSIE creates three XML files for each component created, one

of them being the .spd file. The method used generally in this thesis was to copy the component

that already existed, append the GPU term on the end of the existing name in all classes, and

then modify the make files and XML. Instead, it may be possible to write the .spd file in such a

way that depending on the XML settings specified, the GPU or GPP version of the component

could be used. Using XML as the configuration management, switching between the GPU and

www.manaraa.com

55

GPP versions of the component becomes minute and does not require a recompile. There is

great potential for various future SDR work which can be done with this OSSIE and GPU

set of ideas as well as SDR and GPU in general. As other concepts are further explored, the

GPU will continue to grow in popularity because of the improvements that can been seen in

all software complexity aspects.

www.manaraa.com

56

Bibliography

[1] L. Pucker and G. Holt, “Extending the SCA core framework inside the modem architecture

of a software defined radio,” IEEE Communications Magazine, vol. 52, pp. S21–S25, 2004.

[2] JTRS, Software Communications Architecture Specification, JTRS Std., Rev. 2.2.2, May

2006.

[3] NVIDIA, NVIDIA CUDA C Programming Guide, May 2010.

[4] B. Brannon, “Software defined radio,” Analog Devices, Inc.

[5] J. Mitola, “The software radio architecture,” IEEE, 1995.

[6] C. Kopp, “Network centric warfare fundamentals,” DefenseToday Magazine.

[7] M. R. Turner, “Software defined radio solutions experience making JTRS work, from the

SCA, to waveforms, to secure radios,” SDR Technical Conference and Product Exposition,

2005.

[8] B. Le, F. A. Rodriguez, Q. Chen, B. P. Li, F. Ge, M. ElNaina, T. W. Rondeau, and C. W.

Bostian, “A public safety cognitive radio node,” SDR Forum Technical Conference, 2007.

[9] OMG, Common Object Request Broker Architecture (CORBA) Specification, Version 3.1,

Object Management Group Std., Rev. 3.1, January 2008.

[10] K. Dove, “Nvidia unveils CUDA - the GPU computing revolution begins,” November 2006.

[11] AMD, “Brook+,” AMD, Tech. Rep., 2007.

[12] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston, and P. Hanrahan,

“Brook for GPUs: Stream computing on graphics hardware,” SIGGRAPH, 2004.

www.manaraa.com

57

[13] NVIDIA, NVIDIA CUDA reference Manual, 3rd ed., June 2010.

[14] M. Carrick, “Logical representation of FPGAs and FPGA circuits within SCA,” Master’s

thesis, Virginia Polytechnic Insitute and Unversity, July 2009.

[15] E. Blossom. (2004, November) Exploring GNU radio.

http://www.gnu.org/software/gnuradio/doc/exploring-gnuradio.html.

[16] Unknown. (2006) GNU Radio passive radar project. http://comsec.com/gnuradio-project-

2006.html.

[17] I. imek and R. Rakesh, “GPU acceleration of 2D-DWT image compression in MATLAB

with CUDA,” Second UKSIM European Symposium on Computer Modeling and Simula-

tion, 2008.

[18] L. Shi, H. Chen, and J. Sun, “vCUDA: GPU accelerated high performance computing in

virtual machines,” IEEE, 2009.

[19] S. Chen, ling Qin, Y. Xie, W.-M. Pang, and P.-A. Heng, “CUDA-based acceleration and

algorithm refinement for volume image registration,” BioMedical Information Engineering,

2009.

[20] V. Simek, R. Dvorak, F. Zboril, and V. Drabek, “GPU accelerated solver of time-dependent

air pollutant transport equations,” Digital System Design, Architectures, Methods and

Tools, Euromicro Conference, 2009.

[21] J. Michalakes and M. Vachharajani, “GPU acceleration of numerical weather prediction,”

NSF, 2008.

[22] J. L. Herraiz, S. Espaa, S. Garca, R. Cabido, A. S. Montemayor, M. Desco, J. J. Vaquero,

and J. M. Udias, “GPU acceleration of a fully 3D iterative reconstruction software for

PET using CUDA,” IEEE Nuclear Science Symposium Conference Record, 2009.

www.manaraa.com

58

[23] C.-K. Chiang, S.-F. Wang, Y.-L. Chen, and S.-H. Lai, “Fast JND-based video carving

with GPU acceleration for real-time video retargeting,” IEEE Transactions on Circuits

and Systems for Video Technology, vol. 19, 2009.

[24] S. Tomov, R. Nath, H. Ltaief, and J. Dongarra, “Dense linear algebra solvers for multicore

with GPU accelerators,” IEEE, 2010.

[25] L. L. Jianming Li, Lihua Zhang, “A parallel immune algorithm based on fine-grained model

with GPU-acceleration,” IEEE, 2009.

[26] D. Goddeke, S. H. Buijssen, H. Wobker, and S. Turek, “GPU acceleration of an unmodified

parallel finite element navierstokes solver,” High Performance Computing and Simulation

International Conference, 2009.

[27] M. Ujaldon, “GPU acceleration of zernike moments for large-scale images,” IEEE Inter-

national Symposium, 2009.

[28] J.-M. Laferte, G. Daussin, J. Flifla, and P. Haigron, “Real-time forest simulation for a

flight simulator using a GPU.”

[29] W. Zhu and J. Curry, “Particle swarm with graphics hardware acceleration and local

pattern search on bound constrained problems,” Swarm Intelligence Symposium, SIS 2009,

2009.

[30] X. Han, L. S. Hibbard, and V. Willcut, “GPU-accelerated, gradient-free MI deformable

registration for atlas-based MR brain image segmentation,” IEEE, 2009.

[31] T. Killian, D. L. Faircloth, and S. M. Rao, “Acceleration of TM cylinder EFIE with

CUDA,” IEEE, 2009.

[32] S. E. Krakiwsky, L. E. Turner, and M. M. Okoniewski, “Graphics processor unit (GPU)

acceleration of finite-difference time-domain (FDTD) algorithm,” IEEE, 2004.

[33] J. M. Ready and C. N. Taylor, “GPU acceleration of real-time feature based algorithms,”

IEEE, 2007.

www.manaraa.com

59

[34] O. Fialka and M. Cadik, “FFT and convolution performance in image filtering on GPU,”

IEEE, 2006.

[35] S. Peng and Z. Nie, “Acceleration of the method of moments calculations by using graphics

processing units,” IEEE, 2008.

[36] L. Kun, “Time-domain finite element method (TD-FEM) algorithm,” IEEE, 2009.

[37] J. Kim, S. Hyeon, and S. Choi, “Implementation of an SDR system using graphics pro-

cessing unit,” IEEE, 2010.

[38] P. Szegvari and C. Hentschel, “Scalable software defined FM-radio receiver running on

desktop computers,” IEEE, 2009.

[39] A. Akapyev and V. Krylov, “Implementation of 802.11n on 128-core processor,” ISCA

PDCCS 2008.

[40] M. Wu, S. Gupta, Y. Sun, and J. R. Cavallaro, “A GPU implementation of a real-time

MIMO detector,” IEEE Workshop on Signal Processing Systems, p. 6, 2009.

[41] G. Falcao, V. Silva, and L. Sousa, “How GPUs can outperform ASICs for fast LDPC

decoding,” ACM, p. 10, 2009.

[42] NVIDIA. (2009, September) NVIDIA CUDA library documentation.

http://www.owlnet.rice.edu/ comp422/resources/cuda/html/index.html.

[43] B. Lathi, Linear Systems and Signals, 2nd ed. Oxford University Press, 2005.

	2010
	GPU Integration into a Software Defined Radio Framework
	Joel Gregory Millage
	Recommended Citation

	tmp.1335711608.pdf.YaSAM

